

Konzeptstudie

Neubau einer pharmazeutischen Produktionsstätte gem. EU-GMP Guide

Systemvergleich - Raumlufttechnik

INHALT

INHALT	
PROJEKT DEFINITION	
Projektinhalt	2
Aufgabenstellung	2
Projektgrundlagen	2
BESCHREIBUNG DER VARIANTEN	3
VARIANTE 1 - Zentrale RLT mit 100% AU	
V01 - Beschreibung	
V01 - Mollier-h-x-Diagramm	
V01 - Mollier-h-x-Diagramm - Ergebnisse	
VARIANTE 2 - Zentrale RLT mit 30% AU	ε
V02 - Beschreibung	ε
V02 - Mollier-h-x-Diagramm	
V02 - Mollier-h-x-Diagramm - Ergebnisse	8
VARIANTE 3 – Mischluft - FFU mit 30% AU	g
V03 - Beschreibung	9
V03 - Mollier-h-x-Diagramm	
V03 - Mollier-h-x-Diagramm - Ergebnisse	11
VERGLEICH DER VARIANTEN	12
GRUNDLAGEN	12
Umfang	12
Raum-Luftmengen	12
Geräte-Luftmengen	12
Raumluft-Bedingungen	
Zuluft-Bedingungen	
Energiepreise (Mischkalkulation)	
INVESTITIONSKOSTEN	
Heizungsanlage	
Raumlufttechnik	
Wärmerückgewinnung	
Kälteanlage	
Befeuchtung	
Gebäudekosten für Technikfläche	
Summen	
Grundlagen der Berechnung	
Zusammenfassung der Berechnungsergebnisse	
Jahres-Energiebedarf	
Jahres-Energiekosten	
V01 - RLT-Zentralgerät mit 100% Außenluft und KVS-WRG	
V02 - RLT-Zentralgerät mit 30% Außenluft und Mischkammer	
V03 - Mischluft - FFU mit 30% AU	
FEHLERBETRACHTUNG	
INVESTKOSTEN	
JAHRES-ENERGIEKOSTEN	
FAZIT - SCHLUSSFOLGERUNG	
INVESTKOSTEN	
JAHRES-ENERGIEKOSTEN	10

PROJEKT DEFINITION

Projektinhalt

Unser Kunde plant den Neubau eines Bereiches zur Produktion von pharmazeutischen Produkten an einem bestehenden Standort.

Der Produktions-Bereich soll in einem neu zu errichtenden Gebäude integriert werden. Die erforderliche Medien-Verteilung ist nach Leistungsbedarf zu dimensionieren und an die Liegenschaftsnetze anzubinden. Die zentrale Medienerzeugung ist um die zusätzlich benötigte Leistung zu erweitern.

Es sind GMP-Reinräume auf ca. 3.600 m² Grundfläche mit den Reinheitsklassen C und D vorgesehen. Überwiegend werden im Produktionsbereich verschiedene Solida verarbeitet.

Der Produktionsbereich ist in sich abgeschlossen und über Personal- und Materialschleuse zu erreichen.

Diese Studie umfasst die lufttechnische Anlage des betrachteten Bereiches und die für die Versorgung der RLT notwendigen Medien- und Energiesysteme.

Für diese Betrachtung werden ausschließlich Systeme betrachtet welche durch die konzeptionellen Unterschiede der Varianten beeinflusst werden.

Aufgabenstellung

Im Rahmen dieser Studie sind drei verschiedene Konzepte zur raumlufttechnischen Versorgung des Produktionsbereiches zu erarbeiten und in Bezug auf Ihre Vor- und Nachteile zu bewerten.

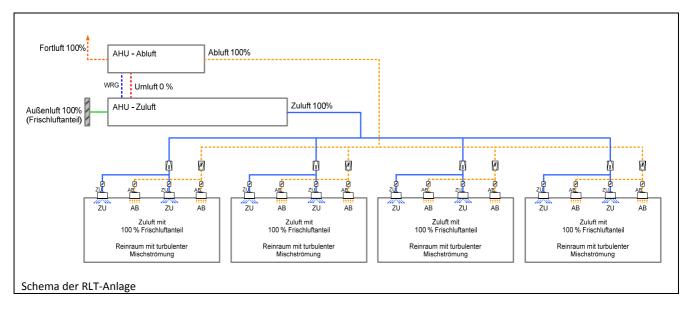
Als Vergleichskriterien sind sowohl die Investitions- als auch die Medienund Energieverbrauchskosten zu ermitteln und einander gegenüber zu stellen.

Bei der Ausarbeitung ist zu beachten, dass die vorgesehenen Anlagen den Anforderungen der EG-GMP- Richtlinie entsprechen müssen.

Für die betrachteten Systeme sind die Investkosten als Richtkosten mit einer Genauigkeit von +/- 20% zu ermitteln. Dabei sollen neben den technischen Systemen auch die Kosten des Bauwerks zur Bereitstellung von Technikflächen berücksichtigt werden.

Die Kosten des jährlichen Energie- und Medienbedarfes der Anlagen sind, unter Einbeziehung lokaler Klimadaten, mittels eines geeigneten Berechnungsverfahrens zu ermitteln. Dabei ist für alle Varianten dasselbe Raum-Klima zugrunde zu legen.

Der Prozessverlauf der Luftaufbereitung soll dem konzeptionellen Ansatz der jeweiligen Variante folgen und einen möglichst effizienten Betrieb der Anlagen gestatten.


Projektgrundlagen

- ⊕ GMP Reinräume Klasse "D" und "C
- ⊕ Grundfläche der Reinräume 3.600 m²
- # Mittlere Raumhöhe 3,00 m
- # Mittlerer Luftwechsel 15/h
- # Klimadatensatz gem. DIN 4710 für Trier
- # Einschlägige Normen und Richtlinien (z. B. DIN, VDI, VDE, ASR usw.)
- # Europäische Pharmazeutische Guidelines (EG-GMP-Guide und Annexe)

BESCHREIBUNG DER VARIANTEN

VARIANTE 1 - Zentrale RLT¹ mit 100% AU²

V01 - Beschreibung

Die gesamte Aufbereitung der Zuluft erfolgt in einem zentralen RLT-Gerät. Das zentrale RLT-Gerät besteht aus einem Zuluft- und einem Abluft-/Fortluftgerät.

Die folgend aufgeführten Luftaufbereitungsfunktionen werden in den Geräten vorgenommen:

- # Wärmerückgewinnung
- # Heizen
- # Kühlen
- # Entfeuchten (durch Kühlung)
- Nachheizen
- # Befeuchten

Zuluft-Gerät mit folgenden Baugruppen:

- # Jalousieklappe
- ⊕ Vorfilter (z.B. der Klasse F7)
- ⊕ WRG³ durch KVS⁴
- ⊕ Vor-Erhitzer-Register
- # Schalldämpfer
- ⊕ Ventilator
- # Schalldämpfer
- # Kühlregister mit Kondensatwanne
- # Tropfenabscheider
- Nach-Erhitzer-Register
- # Dampf-Befeuchterkammer
- # Feinfilter (z.B. Klasse F9)

Abluft-Gerät mit folgenden Baugruppen

- ⊕ Vorfilter (z.B. der Klasse F7)
- # Schalldämpfer
- ⊕ Ventilator
- # Schalldämpfer
- ⊕ WRG durch KVS

Es wird weiter vorausgesetzt, dass Zu- und Abluft-Kastengerät nahe beieinander aufgestellt werden. Die Aufstellung der zentralen RLT-Geräte erfolgt in separaten Technik-Räumen.

Ausgehend von den RLT-Geräten wird die aufbereitete Zuluft über ein verzweigtes Kanalnetz zu den einzelnen Räumen geführt. Mittels verschiedener Kanaleinbauten wird sichergestellt, dass jeder Raum mit der benötigten Luftmenge versorgt wird.

Die Einbringung der Zuluft in die Räume erfolgt mittels deckenbündig eingebauter Lufteinlässe mit Drallplatte und je nach Hygieneklasse mit integrierten Schwebstoff-Filtern.

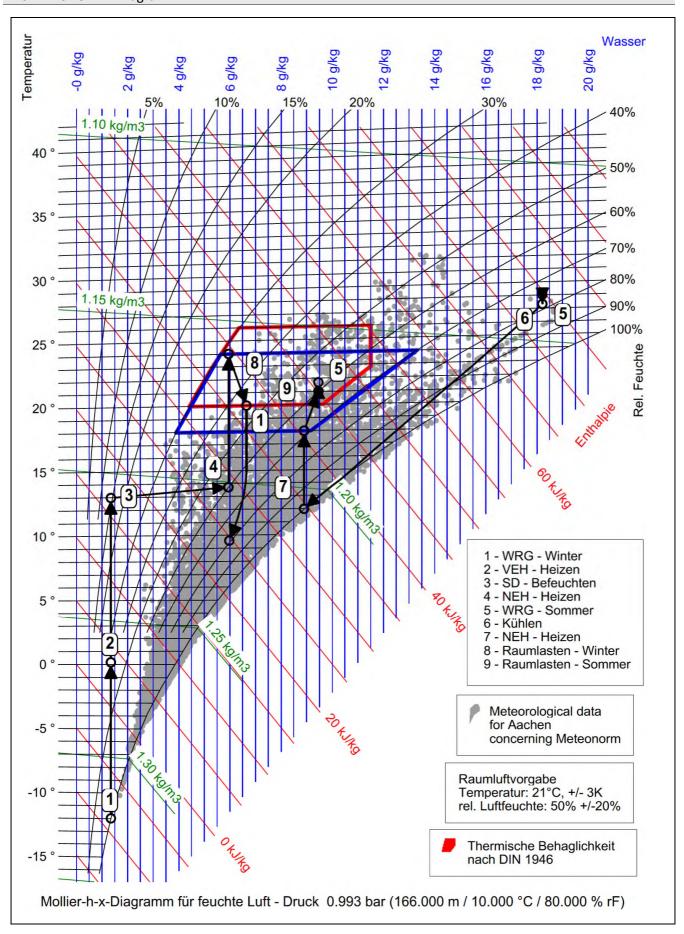
Die Erfassung der Abluft erfolgt über Luftauslässe in der Decke des Raumes. Mittels des an die Auslässe angeschlossenen Kanal-/Rohrnetzes wird die Raumabluft dem zentralen RLT-Gerät im Technikbereich zugeführt und von dem integrierten Abluftventilator nach Entzug der rückgewinnbaren Wärmemenge aus dem Gebäude gefördert.

VORTEILE:

- # Keine Kreuzkontamination
- # Flexible Umnutzung von Räumen möglich
- 4 Ableitung hoher Wärme- und Feuchtelasten möglich

NACHTEILE:

- # Hohe Energie-Kosten der Luftförderung
- # Hohe Energie-Kosten der Luftaufbereitung
- # Hoher Raumbedarf für Installationen
- \oplus Große Investition für Mediensysteme
- # Große Investition für Kanalnetz + Geräte
- # Große Investition für Gebäude
- # Individuelle Leistungsanpassung eingeschränkt


¹ RLT - Raum-Luft-Technik

² AU - Außenluft

³ WRG - Wärme-Rück-Gewinnung

⁴ KVS - Kreislauf - Verbund – System / WRG mit Glykol-Wasser-Gemisch als Wärmeträger

V01 - Mollier-h-x-Diagramm

V01 - Mollier-h-x-Diagramm - Ergebnisse

		RLT-Zentralgerät mit 100% Außenluft	Kommentare
WRG – Wärmerückgewinnung	Winter – System K	VS (1)	
Temperatur-Wirkungsgrad	%	38	Im Extrem-Winterzustand (abgemindert um Vereisung des Ablufttauschers zu verhindern)
Zuluftmenge	kg/h	204.994	
Kaltluft Eintritt	°C/%rF	-12/100	
Warmluft Eintritt	°C	20/45	
Kaltluft Austritt	°C/%rF	0,16/34,8	
Warmluft Austritt	°C	9,6/79	
WRG-Leistung	kW	698	
VEH - Vorheizen der Luft – Win	ter (2)		
Zuluftmenge	kg/h	204.994	
Luft Eintritt	°C/%rF	0,16/34,8	
Luft Austritt	°C/%rF	13/14,4	
VEH-Leistung	kW	738	
Befeuchtung der Luft (3)			
Zuluftmenge	kg/h	204.994	
Luft Eintritt	°C/%rF	13/14,4	
Luft Austritt	°C/%rF	13,7/59,9	
Dampftemperatur	°C	105	
Befeuchtungsmenge	Kg/h	940	
Befeuchtungsleistung	kW	700	
NEH - Nachheizen der Luft – W	inter (4)		
Zuluftmenge	kg/h	204.994	
Luft Eintritt	°C/%rF	13,7/59,9	
Luft Austritt	°C/%rF	24/31,6	
NEH-Leistung	kW	596	
WRG – Wärmerückgewinnung	Sommer – System	KVS (5)	
Temperatur-Wirkungsgrad	%	10	wg. geringer Temperaturdifferenzen
Zuluftmenge	kg/h	210.000	
Kaltluft Eintritt	°C/%rF	21/60	
Warmluft Eintritt	°C	28/75	
Kaltluft Austritt	°C/%rF	21,7/57,5	
Warmluft Austritt	°C	27,3/78	
WRG-Leistung	kW	41,8	
Kühlung der Luft (6)			
Zuluftmenge	kg/h	210.000	
Luft Eintritt	°C/%rF	27,3/78	
Luft Austritt	°C/%rF	12/100	
Medien-Temperatur	°C/°C	6/12	
Register-Leistung	kW	2.300	
NEH - Nachheizen der Luft – So	mmer (7)		
Zuluftmenge	kg/h	210.000	
Luft Eintritt	°C/%rF	12/100	
Luft Austritt	°C/%rF	18/68	
NEH-Leistung	kW	358	

Variante 1

VARIANTE 2 - Zentrale RLT mit 30% AU

V02 - Beschreibung

Die gesamte Aufbereitung der Zuluft erfolgt in einem zentralen RLT-Gerät. Das zentrale RLT- Gerät besteht aus einem Zuluft-/Mischluft- und einem Abluft-/Fortluftgerät.

Die folgend aufgeführten Luftaufbereitungsfunktionen werden in den Geräten vorgenommen:

- # Luftmischung von Außenluft und Umluftanteil
- # Heizen
- # Kühlen
- # Entfeuchten (durch Kühlung)
- Nachheizen

Zuluft-Gerät mit folgenden Baugruppen:

- # Jalousieklappe
- # Mischkammer
- ⊕ Vorfilter (z.B. der Klasse F7)
- ⊕ Vor-Erhitzer-Register
- ⊕ Schalldämpfer
- ⊕ Ventilator
- # Schalldämpfer
- # Kühlregister mit Kondensatwanne
- # Tropfenabscheider
- ⊕ Nach-Erhitzer-Register
- # Feinfilter (z.B. Klasse F9)

Abluft-Gerät mit folgenden Baugruppen

- ⊕ Vorfilter (z.B. der Klasse F7)
- Schalldämpfer
- ⊕ Ventilator
- # Schalldämpfer
- # Mischkammer
- ⊕ Jalousieklappe auf der Fortluftseite

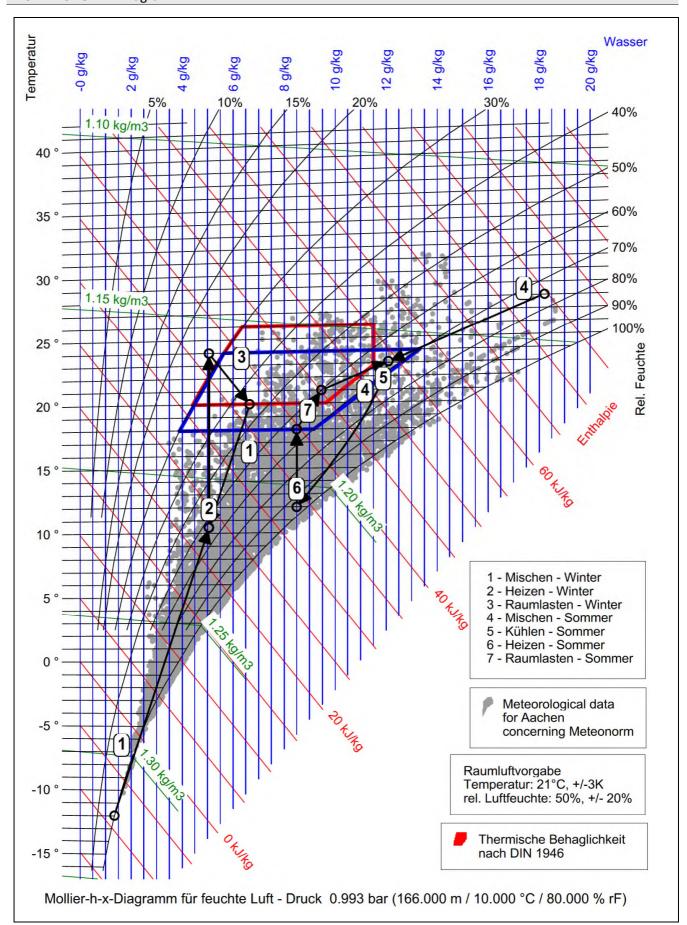
Es wird weiter vorausgesetzt, dass Zu- und Abluft-Kastengerät direkt beieinander aufgestellt werden.

Die Aufstellung der zentralen RLT-Geräte erfolgt in separaten Technik-Räumen.

Ausgehend von den RLT-Geräten wird die aufbereitete Zuluft über ein verzweigtes Kanalnetz zu den einzelnen Räumen geführt. Mittels verschiedener Kanaleinbauten wird sichergestellt, dass jeder Raum mit der benötigten Luftmenge versorgt wird.

Die Einbringung der Zuluft in die Räume erfolgt mittels deckenbündig eingebauter Lufteinlässe mit Drallplatte und je nach Hygieneklasse mit integrierten Schwebstoff-Filtern.

Die Erfassung der Abluft erfolgt über Luftauslässe in der Decke des Raumes. Mittels des an die Auslässe angeschlossenen Kanal-/Rohrnetzes wird die Raumabluft dem zentralen RLT-Gerät im Technikbereich zugeführt. Der festgelegte oder variable Umluftanteil wird der von außen angesaugten Frischluft (Außenluft) beigemischt.

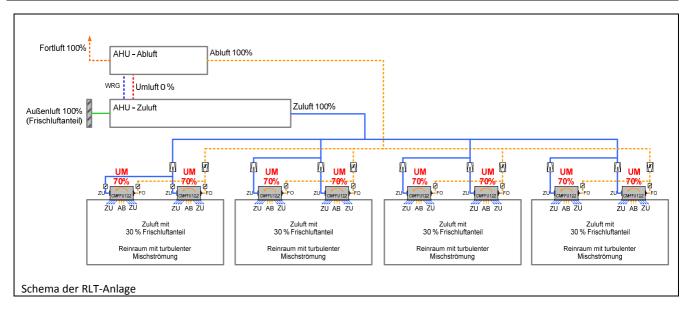

VORTEILE:

- ➡ Niedrigere Energie-Kosten der Luftaufbereitung
- # Geringere Investition für Mediensysteme
- 4 Ableitung hoher Wärme- und Feuchtelasten möglich

NACHTEILE:

- # Kreuzkontamination möglich
- # Flexible Umnutzung von Räumen eingeschränkt
- # Hohe Energie-Kosten der Luftförderung
- # Hoher Raumbedarf für Installationen
- ⊕ Große Investition für Kanalnetz + Geräte
- # Große Investition für Gebäude
- 申 Individuelle Leistungsanpassung eingeschränkt

V02 - Mollier-h-x-Diagramm



V02 - Mollier-h-x-Diagramm - Ergebnisse

		Variante 2 RLT-Zentralgerät mit 30% Außenluft	Kommentare
Mischen von zwei Luftmenge	n – Winter (1)	30% Außemult	
Zuluftmenge	kg/h	204.994	
Außenluftmenge	kg/h	61.498	
Umluft Eintritt	kg/h	143.496	
Außenluft Eintritt	°C/%rF	-12/100	
Umluft Eintritt	°C/%rF	20/45	
Mischluft Austritt	°C/%rF	10,5/63,3	
NEH - Nachheizen der Luft –	Winter (2)		
Zuluftmenge	kg/h	204.994	
Luft Eintritt	°C/%rF	10,5/63,3	
Luft Austritt	°C/%rF	24/27	
NEH-Leistung	kW	782	
Mischen von zwei Luftmenge	n – Sommer (4)		
Zuluftmenge	kg/h	210.000	
Außenluftmenge	kg/h	63.000	
Umluft Eintritt	kg/h	147.000	
Außenluft Eintritt	°C/%rF	28/75	
Umluft Eintritt	°C/%rF	21/60	
Mischluft Austritt	°C/%rF	23/67	
Kühlung der Luft – Sommer (5)		
Zuluftmenge	kg/h	210.000	
Luft Eintritt	°C/%rF	23/67	
Luft Austritt	°C/%rF	12/95,4	
Medien-Temperatur	°C/°C	6/12	
Register-Leistung	kW	1.198	
NEH - Nachheizen der Luft –	Sommer (6)		
Zuluftmenge	kg/h	210.000	
Luft Eintritt	°C/%rF	12/95,4	
Luft Austritt	°C/%rF	18/65	
NEH-Leistung	kW	358	

VARIANTE 3 - Mischluft - FFU mit 30% AU

V03 - Beschreibung

Die Aufbereitung des erforderlichen Frischluftanteils der Zuluft erfolgt in einem zentralen RLT-Gerät. Die benötigte Raum-Zuluft wird durch dezentrale Mischluftgeräte bereitgestellt. Das zentrale RLT-Gerät besteht aus einem Zuluft- und einem Fortluftgerät. Luftaufbereitungsfunktionen Zentralgerät + Mischluftgerät:

- ⊕ Wärmerückgewinnung
- # Heizen
- # Kühlen (entfeuchtend)
- # Entfeuchten (durch Kühlung)
- # Nachheizen
- Mischen von Frischluft und Umluft
- # Kühlen (sensibel)
- # Filterung

Zuluft-Gerät mit folgenden Baugruppen:

- Jalousieklappe
- ⊕ Vorfilter (z.B. der Klasse F7)
- ⊕ WRG durch KVS
- ⊕ Vor-Erhitzer-Register
- # Schalldämpfer
- ⊕ Ventilator
- # Schalldämpfer
- # Kühlregister mit Kondensatwanne
- # Tropfenabscheider
- ⊕ Nach-Erhitzer-Register
- # Feinfilter (z.B. Klasse F9)

Dezentrales Mischluft-Gerät mit folgenden Baugruppen:

- Abluftauslass
- ⊕ Vorfilter (z.B. der Klasse G4)
- # Mischkammer
- # Kühlregister (sensibel)
- ⊕ Ventilator
- # Schwebstoff-Filter (z.B. Klasse H14)
- # Drallauslass

Abluft-Gerät mit folgenden Baugruppen

⊕ Vorfilter (z.B. der Klasse F7)

- # Schalldämpfer
- ⊕ Ventilator
- # Schalldämpfer
- ⊕ WRG durch KVS

Es wird weiter vorausgesetzt, dass Zu- und Abluft-Kastengerät nahe beieinander aufgestellt werden.

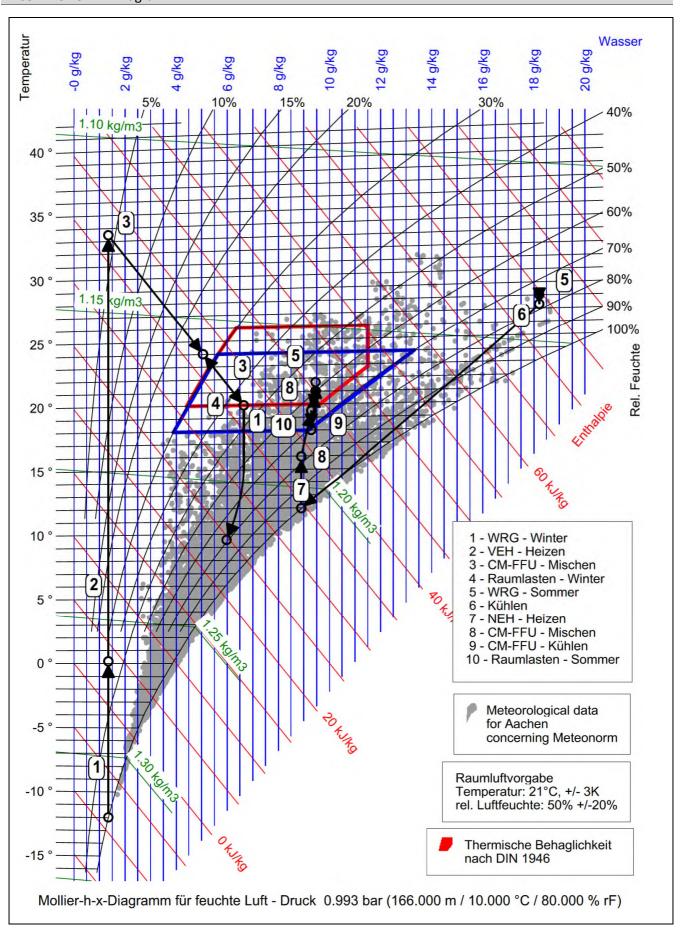
Die Aufstellung der zentralen RLT-Geräte erfolgt in separaten Technik-Räumen.

Ausgehend von den RLT-Geräten wird die aufbereitete Frischluft über ein verzweigtes Kanalnetz zu den einzelnen Räumen geführt. Mittels verschiedener Kanaleinbauten wird sichergestellt, dass jedes Umluftgerät mit der benötigten Frischluftmenge versorgt wird.

Die aufbereitete Frischluft wird im dezentralen Mischluftgerät mit einem Umluftanteil gemischt, falls erforderlich abgekühlt und gefiltert.

Die Einbringung der Zuluft in die Räume sowie die Erfassung der Raum-Abluft erfolgt mittels der Umluftgeräte.

Mittels des am Mischluftgerät angeschlossenen Rohrnetzes wird die Raum-Abluft dem zentralen RLT-Gerät im Technikbereich zugeführt.


VORTEILE:

- # Keine Kreuzkontamination
- Niedrige Energie-Kosten der Luftaufbereitung
- # Geringere Investition für Mediensysteme
- # Flexible Umnutzung von Räumen
- # Geringe Energie-Kosten der Luftförderung
- 🖶 Geringer Raumbedarf für Installationen
- \oplus Reduzierte Investition für Kanalnetz + Geräte
- # Reduzierte Investition für Gebäude
- Gerätespezifische Einstellung von Temperatur und Fischluftanteil möglich
- # Einzel- oder Gruppensteuerung der Mischluft-Geräte

NACHTEILE:

- Dezentrale Geräte im Gebäude verteilt
- # Kühlwasserleitungen oberhalb Reinraumdecke
- # Ableitung von Feuchtelasten ist eingeschränkt

V03 - Mollier-h-x-Diagramm

V03 - Mollier-h-x-Diagramm - Ergebnisse

		Variante 3 Mischluft – FFU mit	Kommentare
		30% AU	
WRG – Wärmerückgewinnung	Winter – System KV	'S (1)	
Temperatur-Wirkungsgrad	%	38	Im Extrem-Winterzustand (abgemindert um Vereisung des Ablufttauschers zu verhindern)
Außenluftmenge	kg/h	61.498	
Kaltluft Eintritt	°C/%rF	-12/100	
Warmluft Eintritt	°C	20/45	
Kaltluft Austritt	°C/%rF	0,16/34,8	
Warmluft Austritt	°C	9,6/79	
WRG-Leistung	kW	209	
VEH - Vorheizen der Luft – Win	ter (2)		
Zuluftmenge	kg/h	61.498	
Luft Eintritt	°C/%rF	0,16/34,8	
Luft Austritt	°C/%rF	33,5/4,2	
VEH-Leistung	kW	575	
Mischen von zwei Luftmengen	(CM-FFU) – Winter	(3)	
Zuluftmenge	kg/h	204.994	
Außenluftmenge	kg/h	61.498	
Umluft Eintritt	kg/h	143.496	
Außenluft Eintritt	°C/%rF	33,5/4,2	
Umluft Eintritt	°C/%rF	20/45	
Mischluft Austritt	°C/%rF	24/26,9	
WRG – Wärmerückgewinnung	Sommer – System k	(VS (5)	
Temperatur-Wirkungsgrad	%	10	wg. geringer Temperaturdifferenzen
Zuluftmenge	kg/h	63.000	
Kaltluft Eintritt	°C/%rF	21/60	
Warmluft Eintritt	°C	28/75	
Kaltluft Austritt	°C/%rF	21,7/57,5	
Warmluft Austritt	°C	27,3/78	
WRG-Leistung	kW	12,5	
Kühlung der Luft (6)			
Zuluftmenge	kg/h	63.000	
Luft Eintritt	°C/%rF	27,3/78	
Luft Austritt	°C/%rF	12/100	
Medien-Temperatur	°C/°C	6/12	
Register-Leistung	kW	690	
NEH - Nachheizen der Luft – So	mmer (7)		
Zuluftmenge	kg/h	63.000	
Luft Eintritt	°C/%rF	12/100	
Luft Austritt	°C/%rF	16/77	
NEH-Leistung	kW	72	
Mischen von zwei Luftmengen			
Zuluftmenge	kg/h	210.000	
Außenluftmenge	kg/h	63.000	
Umluft Eintritt	kg/h	147.000	
Außenluft Eintritt	°C/%rF	16/77	
Umluft Eintritt	°C/%rF	21/60	
Mischluft Austritt	°C/%rF	19,5/65	
Kühlung der Luft (CM-FFU) – Sc			
Zuluftmenge	kg/h	210.000	
Luft Eintritt	°C/%rF	19,5/65	
Luft Austritt	°C/%rF	18/71	
Medien-Temperatur	°C/°C	14/18	
Register-Leistung	kW	90	

VERGLEICH DER VARIANTEN

GRUNDLAGEN

		Variante 1 RLT-Zentralgerät mit 100% Außenluft	Variante 2 RLT-Zentralgerät mit 30% Außenluft	Variante 3 Mischluft - FFU⁵ mit 30% Außenluft
Umfang				
Reinraum Klassifizierung	EU GMP ⁶	"D", "C"	"D", "C"	"D", "C"
Grundfläche	m²	3.600	3.600	3.600
Lichte Raumhöhe	m	3,00	3,00	3,00
Rechnerisches Raumvolumen	m³	10.800	10.800	10.800
Raum-Luftmengen				
Raum-Luftwechsel	1/h	15	15	15
Raum-Zuluftmenge	m³/h	162.000	162.000	162.000
Zuschlag für Kanal-Leckagen	%	10	10	10
Brutto Zuluftmenge	m³/h	178.200	178.200	178.200
Geräte-Luftmengen				
AU-Anteil	%	100	30	30
AHU ⁷ -Luftmenge	m³/h	178.200	178.200	53.460
Luftmenge Umluftgeräte	m³/h	0	0	178.200
Raumluft-Bedingungen				
Raumluft - Winter	°C/%rF	20/45	20/45	20/45
Raumluft - Sommer	°C/%rF	21/60	21/60	21/60
Zuluft-Bedingungen				
Zuluft - Winter	°C	24	24	24
Zuluft - Sommer	°C	18	18	18
Zuluftmenge Winter	kg/h	204.994	204.994	204.994
Zuluftmenge Sommer	Kg/h	210.000	210.000	210.000
Energiepreise (Mischkalkulation)			
Elektroenergie	€/MWh	20,00	20,00	20,00
Heizung	€/MWh	73,40	73,40	73,40
Kälte	€/MWh	95,20	95,20	95,20
Wasser	€/m³	9,00	9,00	9,00
Dampf	€/MWh	180,00	180,00	180,00

⁵ FFU - Filter-Fan-Units

⁶ EU-GMP - Europäischer GMP-Guide und seine Anhänge

⁷ AHU - Air-Handling-Unit

780

450

351.000 €

-55,29%

INVESTITIONSKOSTEN⁸

Kühlleistung gesamt

Investkosten - Kälte

Spez. Kosten

Variante 1 Variante 2 Variante 3 **RLT-Zentralgerät mit RLT-Zentralgerät mit** Mischluft - FFU mit 100% Außenluft 30% Außenluft 30% AU Heizungsanlage je m³/h Spezifische Kosten bez. auf ZU⁹ 2,84€ 1,67€ 1,23€ Installierte Leistung (VEH¹⁰ + NEH¹¹ kW 1.334 783 575 €/kW 380 Spez. Kosten 380 380 Investkosten - Heizung 506.920 € 297.540 € 218.500 € Raumlufttechnik Spezifische Kosten bez. auf ZU je m³/h 13,41€ 13,41€ 7,72€ 173.745 RLT-Zentralgeräte 3,25 €/m³/h 579.150 579.150 Dezentrale Umluftgeräte 3,70 €/m³/h 659.340 573.804 573.804 Kanal-/Rohrnetz 3,22 €/m³/h 172.141 3,84 €/m³/h Kanaleinbauten 684.288 684.288 205.286 Dämmung 1,24 €/m³/h 220.968 220.968 66.290 Montage 1,86 €/m³/h 99.436 331.452 331.452 Investkosten - RLT 2.389.662 € 2.389.662 € 1.376.239 € Wärmerückgewinnung je m³/h 0,00€ Spezifische Kosten bez. auf ZU 1.49 € 0,45€ Installierte Leistung kW 698 0 210 Spez. Kosten €/kW 380 380 380 79.800€ Investkosten - WRG 265.240 € 0€ Kälteanlage Spezifische Kosten bez. auf ZU 3,03€ je m³/h 5.81€ 1.97 € Enthalpie Diff. Zentral kJ/kgK 39,432 20,535 39,432 Enthalpie Diff. Umluftgeräte kJ/kgK 1.237

Befeuchtung				
Spezifische Kosten bez. auf ZU	je m³/h	1,37 €	0,00 €	0,00€
Befeuchtungsleistung	g/kg	4,586	0	0
Befeuchtungsleistung	kg/h	940	0	0
Befeuchtungsleistung	kW	700	0	0
Spez. Kosten	€/g/kg	260	260	260
Investkosten - Befeuchtung		244.400 €	0€	0€
Gebäudekosten für Technikfläche	2			
Spezifische Kosten bez. auf ZU	je m³/h	1,30 €	1,30 €	0,36 €
Max. AHU-Gerätegröße	m³/h	55.000	55.000	55.000
Anzahl Zentralgeräte	Stück	4	4	1
Mittlere Gerätegröße	m³/h	44.550	44.550	53.460
Technikfläche RLT gem. VDI 3803	m²	462	462	127
Spez. Kosten Gebäude	€/m²	500	500	500
Investkosten – Gebäude		231.000 €	231.000 €	63.500 €
Summen				
Investkosten - Summe		4.672.222€	3.457.302 €	2.089.039 €
Spezifische Kosten bez. auf ZU	je m³/h	26,22€	19,40€	11,72€

0%

2.300

450

1.035.000€

1.198

450

539.100 €

-26,00%

kW

€/kW

Abweichung

⁸ Der hier ermittelte Investitionsaufwand wurde auf Grundlage der Dimensionierung der Lufttechnik und Mediensysteme durch Multiplikation mit spezifischen Kostenkennwerten ermittelt. Die angewendeten Kennwerte beziehen sich auf ein konkretes Projekt und berücksichtigen den Anlagenaufbau sowie Anforderungen an die Qualität der einzusetzenden Komponenten. Die Kennzahlen sollten deshalb immer an das jeweils konkrete Projekt angepasst werden.

⁹ ZU - Zuluft

¹⁰ VEH - Vorerhitzer

¹¹ NEH - Nacherhitzer

JAHRES-ENERGIEKOSTEN

Grundlagen der Berechnung

Die im Folgenden dargestellten Ergebnisse wurden durch eine dynamische Simulation der lufttechnischen Anlage erzielt. Dabei wurde der energetisch relevante Aufbau der Anlage zugrunde gelegt und mit einer optimierten Regelungsstrategie kombiniert. Für die Berechnung des Jahresverlaufes wurde der Datensatz "Trier" der DIN 4710 verwendet.

Die Berechnungen wurden mit dem Tool "RLT-Anlagen-Betriebs-Simulation" von MH-Software durchgeführt.

Die Ergebnisse werden jedoch vom technischen Aufbau des Systems, dem Betriebsregime und der Regelungsstrategie der lufttechnischen Anlage erheblich beeinflusst und können deshalb nicht unmittelbar auf andere Projekte übertragen werden.

Zusammenfassung der Berechnungsergebnisse

Jahres-Energiebedarf

Variante	Wärme	Kälte	Wasser	Dampf	Strom	Gesamt	Ersparnis	
	kWh/a	kWh/a	m³/a	kWh/a	kWh/a	kWh/a	kWh/a	%
V01 - Zentralgerät mit 100% AU	2.007.200	563.113	337	252.195	1.403.911	4.226.756	0	0,00%
V02 - Zentralgerät mit 30% AU	1.097.288	536.037	0	0	1.410.132	3.043.457	1.183.299	28,00%
V03 - Mischluft-FFU mit 30% AU	778.677	401.981	0	0	632.861	1.813.519	2.413.237	57,09%

Jahres-Energiekosten

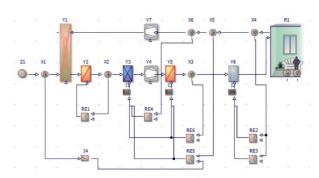
Variante	Wärme	Kälte	Wasser	Dampf	Strom	Gesamt	Ersparnis	
	€/a	€/a	€/a	€/a	€/a	€/a	€/a	%
V01 - Zentralgerät mit 100% AU	147.328	53.608	3.035	45.395	280.782	530.148	0	0,00%
V02 - Zentralgerät mit 30% AU	80.541	51.031	0	0	282.026	413.598	116.550	21,98%
V03 - Mischluft-FFU mit 30% AU	57.155	38.269	0	0	126.572	221.996	308.152	58,13%

Bei dieser Berechnung handelt es sich um eine projektbezogene Berechnung. Die Ergebnisse werden vom technischen Aufbau des Systems, dem Betriebsregime und der Regelungsstrategie der lufttechnischen Anlage beeinflusst und können deshalb nicht unverändert auf andere Projekte übertragen angewendet werden.

V01 - RLT-Zentralgerät mit 100% Außenluft und KVS-WRG

V01 - Regelstrategie

Die Raumtemperatur wird im Winter auf einen Festwert geregelt und im Sommer angehoben. Die Zulufttemperatur wird nach Raum-Ablufttemperatur geführt. Die Raumfeuchte wird unter Berücksichtigung einer neutralen Feuchtezone geregelt. Solange die Feuchte innerhalb eines vorgegebenen Bereiches liegt, findet weder Be- noch Entfeuchtung statt. Die Zuluftfeuchte wird vom Raum-Abluftfeuchte-Regler geführt.


Der Abluftventilator wird druckgeführt und gewährleistet einen konstanten Kanaldruck im Netz. Für diese Betrachtung wird der Zuluftvolumenstrom als konstant angesetzt. Durch raumweise Reduzierung des Zuluftwechsels außerhalb der Betriebszeit kann zusätzlich Energie gespart werden, da der Ventilator dann mit reduzierter Leistung betrieben werden kann und sich die Massenströme an allen Luftbehandlungseinheiten reduzieren. Der Abluftventilator wird ebenfalls druckgeführt und gewährleistet einen konstanten Kanaldruck im Netz. Dieser ist derart einzustellen, dass durch die Volumen-/ bzw. Druckregler der Räume bedarfsgerecht versorgt werden.

Es ist ein KVS-WRG vorgesehen. Der thermische Wirkungsgrad ist mit 55% angesetzt. Im Sommerbetrieb kann der Wirkungsgrad aufgrund der geringen Temperaturdifferenzen gemindert sein. Im Winterbetrieb kann es erforderlich sein, den Wirkungsgrad des KVS durch aktiven Eingriff am Dreiwege-Ventil des KVS herabzusetzen, um das luftseitige Einfrieren des Fortlufttauschers zu verhindern. Beide Sonderfälle sind für diese vergleichende Betrachtung nicht berücksichtigt.

Das Kühlregister im zentralen RLT-Gerät wird hydraulisch mengengeregelt gefahren, da bereits bei geringen Ventilöffnungen Feuchteausscheidung gefordert ist.

Dies bedeutet erhebliche Energieeinsparung gegenüber dem temperaturgeregelten Kühlerbetrieb.

Wasserausscheidung nach der Befeuchtung im Kanal wird durch eine Maximalbegrenzungsregelung der rel. Zuluftfeuchte auf 85% verhindert. Die Feuchteregelung über das Dampfventil setzt Prozeßdampf voraus. Steht dieser nicht zur Verfügung, so kann ein stetig ansteuerbarer elektrischer Dampfbefeuchter eingesetzt werden. Die Regelungsstrategie bleibt die gleiche. Zur Regelung der Raumtemperatur und Raumfeuchte werden die Ablufttemperatur und Abluftfeuchte gemessen da die Regelkreise schneller sind als bei Einsatz von Raumfühlern.

Bei der Führung (Feuchte-Kaskadenregelung) der minimalen bzw. maximalen Raumluftfeuchte-Sollwerte muss darauf geachtet werden, dass eine neutrale Zone in den Sollwerten erhalten bleibt. Damit wird ein gleichzeitiges Be- und Entfeuchten verhindert.

V01 - Jahres - Energiebedarf

Anlagenkomponente	Wärme	Kälte	Wasser	Dampf	Strom	Gesamt
	kWh/a	kWh/a	m³/a	kWh/a	kWh/a	kWh/a
KVS-WRG	-3.591.998	-39.216	0	0	0	-3.631.214
Mischkammer	0	0	0	0	0	0
Vorerhitzer	33.072	0	0	0	0	33.072
Kühler mengengeregelt	0	563.113	0	0	0	563.113
Ventilator – Zuluft	0	0	0	0	910.556	910.556
Nacherhitzer	1.974.128	0	0	0	0	1.974.128
Dampfbefeuchter	0	0	337	252.195	0	252.532
Mischkammer	0	0	0	0	0	0
Kühler, temperaturgeregelt	0	0	0	0	0	0
Ventilator – Umluft	0	0	0	0	0	0
Ventilator - Abluft	0	0	0	0	493.355	493.355
Summen:	2.007.200	563.113	337	252.195	1.403.911	4.226.756

V01 - Jahres - Energiekosten

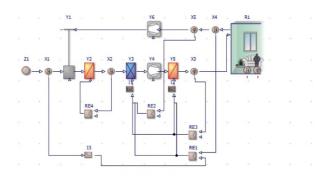
Anlagenkomponente	Wärme	Kälte	Wasser	Dampf	Strom	Gesamt
	€/a	€/a	€/a	€/a	€/a	€/a
KVS-WRG	-263.653	-3.733	0	0	0	-267.386
Mischkammer	0	0	0	0	0	0
Vorerhitzer	2.427	0	0	0	0	2.427
Kühler mengengeregelt	0	53.608	0	0	0	53.608
Ventilator – Zuluft	0	0	0	0	182.111	182.111
Nacherhitzer	144.901	0	0	0	0	144.901
Dampfbefeuchter	0	0	3.035	45.395	0	48.430
Mischkammer	0	0	0	0	0	0
Kühler, temperaturgeregelt	0	0	0	0	0	0
Ventilator – Umluft	0	0	0	0	0	0
Ventilator - Abluft	0	0	0	0	98.671	98.671
Summen:	147.328	53.608	3.035	45.395	280.782	530.148

V02 - RLT-Zentralgerät mit 30% Außenluft und Mischkammer

V02 - Regelstrategie

Die Raumtemperatur wird im Winter auf einen Festwert geregelt und im Sommer angehoben. Die Zulufttemperatur wird nach Raum-Ablufttemperatur geführt.

Die Raumfeuchte wird auf einen Maximalwert von 65% begrenzt. Solange die Feuchte unterhalb dieses vorgegebenen Wertes liegt, findet keine Entfeuchtung statt. Die Zuluftfeuchte wird von Raum-Abluftfeuchte-Regler geführt.


Der Abluftventilator wird druckgeführt und gewährleistet einen konstanten Kanaldruck im Netz. Für diese Betrachtung wird der Zuluftvolumenstrom als konstant angesetzt. Durch raumweise Reduzierung des Zuluftwechsels außerhalb der Betriebszeit kann zusätzlich Energie gespart werden, da der Ventilator dann mit reduzierter Leistung betrieben werden kann und sich die Massenströme an allen Luftbehandlungseinheiten reduzieren. Der Abluftventilator wird ebenfalls druckgeführt und gewährleistet einen konstanten Kanaldruck im Netz. Dieser ist derart einzustellen, dass durch die Volumen-/ bzw. Druckregler der Räume bedarfsgerecht versorgt werden.

Es ist eine Mischkammer mit einer festen Außenluft-Rate von 30% vorgesehen. Um eine Beeinträchtigung der Druckregelung der angeschlossenen Räume zu verhindern sollte auf eine voll-variable Ansteuerung der Mischklappen verzichtet werden.

Das Kühlregister im zentralen RLT-Gerät wird hydraulisch mengengeregelt gefahren, da bereits bei geringen Ventilöffnungen Feuchteausscheidung gefordert ist.

Dies bedeutet erhebliche Energieeinsparung gegenüber dem temperaturgeregelten Kühlerbetrieb.

Wasserausscheidung nach der Kühlung im Kanal wird durch eine Maximalbegrenzungsregelung der rel. Zuluftfeuchte auf 85% verhindert, welche auf das Nachheizregister wirkt.

Zur Regelung der Raumtemperatur und Raumfeuchte werden die Ablufttemperatur und Abluftfeuchte gemessen, da die Regelkreise schneller sind als bei Einsatz von Raumfühlern.

Eine Befeuchtung ist nicht vorgesehen, da dies durch den hohen Umluftanteil und aufgrund der vorgegebenen Grenzen der Raumluft-Feuchte nicht erforderlich ist. Bei engeren Toleranzgrenzen für Feuchte kann auch bei einer Mischluftanlage eine zusätzliche Befeuchtung erforderlich sein.

V02 - Jahres - Energiebedarf

Anlagenkomponente	Wärme	Kälte	Wasser	Dampf	Strom	Gesamt
	kWh/a	kWh/a	m³/a	kWh/a	kWh/a	kWh/a
KVS-WRG	0	0	0	0	0	0
Mischkammer	-5.776.814	-71.268	-1760	0	0	-5.849.842
Vorerhitzer	10.384	0	0	0	0	10.384
Kühler mengengeregelt	0	536.037	0	0	0	536.037
Ventilator – Zuluft	0	0	0	0	916.541	916.541
Nacherhitzer	1.086.904	0	0	0	0	1.086.904
Dampfbefeuchter	0	0	0	0	0	0
Mischkammer	0	0	0	0	0	0
Kühler temperaturgeregelt	0	0	0	0	0	0
Ventilator – Umluft	0	0	0	0	0	0
Ventilator - Abluft	0	0	0	0	493.591	493.591
Summen:	1.097.288	536.037	0	0	1.410.132	3.043.457

V02 - Jahres - Energiekosten

Anlagenkomponente	Wärme	Kälte	Wasser	Dampf	Strom	Gesamt
	€/a	€/a	€/a	€/a	€/a	€/a
KVS-WRG	0	0	0	0	0	0
Mischkammer	-424.018	-6.785	0	0	0	-430.803
Vorerhitzer	762	0	0	0	0	762
Kühler mengengeregelt	0	51.031	0	0	0	51.031
Ventilator – Zuluft	0	0	0	0	183.308	183.308
Nacherhitzer	79.779	0	0	0	0	79.779
Dampfbefeuchter	0	0	0	0	0	0
Mischkammer	0	0	0	0	0	0
Kühler temperaturgeregelt	0	0	0	0	0	0
Ventilator – Umluft	0	0	0	0	0	0
Ventilator - Abluft	0	0	0	0	98.718	98.718
Summen:	80.541	51.031	0	0	282.026	413.598

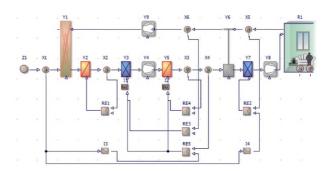
V03 - Mischluft - FFU mit 30% AU

V03 - Regelstrategie

Die Raumtemperatur wird im Winter auf einen Festwert geregelt und im Sommer angehoben. Die Zulufttemperatur wird nach Raum-

Ablufttemperatur geführt. Die Raumfeuchte wird auf einen Maximalwert von 65% begrenzt. Solange die Feuchte unterhalb dieses vorgegebenen Wertes liegt, findet keine Entfeuchtung statt. Die Zuluftfeuchte wird von Raum-Abluftfeuchte-Regler geführt.

Der Abluftventilator wird druckgeführt und gewährleistet einen konstanten Kanaldruck im Netz. Für diese Betrachtung wird der Zuluftvolumenstrom als konstant angesetzt. Durch raumweise Reduzierung des Zuluftwechsels außerhalb der Betriebszeit kann zusätzlich Energie gespart werden, da der Ventilator dann mit reduzierter Leistung betrieben werden kann und sich die Massenströme an allen Luftbehandlungseinheiten reduzieren.


Der Abluftventilator wird ebenfalls druckgeführt und gewährleistet einen konstanten Kanaldruck im Netz. Dieser ist derart einzustellen, dass durch die Volumen-/ bzw. Druckregler der Räume bedarfsgerecht versorgt werden.

Es ist ein KVS-WRG im Außenluftanteil vorgesehen. Der thermische Wirkungsgrad ist mit 55 % angesetzt. Im Sommerbetrieb kann der Wirkungsgrad aufgrund der geringen Temperaturdifferenzen gemindert sein. Im Winterbetrieb kann es erforderlich sein den Wirkungsgrad des KVS durch aktiven Eingriff am Dreiwege-Ventil des KVS herabzusetzen um das luftseitige Einfrieren des Fortlufttauschers zu verhindern. Beide Sonderfälle sind für diese vergleichende Betrachtung nicht berücksichtigt.

Das Kühlregister im zentralen RLT-Gerät wird hydraulisch mengengeregelt gefahren, da bereits bei geringen Ventilöffnungen Feuchteausscheidung gefordert ist. Dies bedeutet erhebliche Energieeinsparung gegenüber einem temperaturgeregelten Kühlerbetrieb. Das Kühlregister in den dezentralen Mischluftgeräten wird temperaturgeführt gefahren, da hier keine Feuchteausscheidung gewünscht ist.

Wasserausscheidung nach der Kühlung im Kanal wird durch eine Maximalbegrenzungsregelung der rel. Zuluftfeuchte auf 85% verhindert, welche auf das Nachheizregister wirkt.

Zur Regelung der Raumtemperatur und Raumfeuchte werden die Ablufttemperatur und Abluftfeuchte gemessen, da die Regelkreise schneller sind als bei Einsatz von Raumfühlern.

Die Zulufttemperatur des Zentralgerätes wird lastabhängig adaptiert. Dabei sollte gewährleistet sein, dass die resultierende Mischlufttemperatur (im dezentralen Mischluftgerät) ohne zusätzliche Nachbehandlung eine ausreichende Beheizung außerhalb der Produktionszeit (bei Wegfall der aktiven inneren Lasten) gewährleistet. In den dezentralen Mischluftgeräten erfolgt die Mischung mit dem Umluftanteil und geführt durch die Ablufttemperatur eine bedarfsgerechte Abkühlung der gemischten Zuluft. Durch Umschaltung des integrierten Registers ist es möglich, bedarfsweise die Mischluft nachzuheizen.

Eine Befeuchtung ist im System nicht vorgesehen, da dies durch den hohen Umluftanteil und aufgrund der vorgegebenen Grenzen der Raumluft-Feuchte nicht erforderlich ist. Bei engeren Toleranzgrenzen für Feuchte kann eine zusätzliche Befeuchtung erforderlich sein.

V03 - Jahres - Energiebedarf

Anlagenkomponente	Wärme	Kälte	Wasser	Dampf	Strom	Gesamt
	kWh/a	kWh/a	m³/a	kWh/a	kWh/a	kWh/a
KVS-WRG	-1.031.769	-11.383	0	0	0	-1.043.152
Mischkammer	0	0	0	0	0	0
Vorerhitzer	154.999	0	0	0	0	154.999
Kühler mengengeregelt	0	360.095	0	0	0	360.095
Ventilator – Zuluft	0	0	0	0	274.914	274.914
Nacherhitzer	623.678	0	0	0	0	623.678
Dampfbefeuchter	0	0	0	0	0	0
Mischkammer	-1.687.619	-79.894	-2208	0	0	-1.769.721
Kühler temperaturgeregelt	0	41.886	0	0	0	41.886
Ventilator – Umluft	0	0	0	0	219.391	219.391
Ventilator - Abluft	0	0	0	0	138.556	138.556
Summen:	778.677	401.981	0	0	632.861	1.813.519

V03 - Jahres - Energiekosten

Anlagenkomponente	Wärme	Kälte	Wasser	Dampf	Strom	Gesamt
	€/a	€/a	€/a	€/a	€/a	€/a
KVS-WRG	-75.732	-1.084	0	0	0	-76.816
Mischkammer	0	0	0	0	0	0
Vorerhitzer	11.377	0	0	0	0	11.377
Kühler mengengeregelt	0	34.281	0	0	0	34.281
Ventilator – Zuluft	0	0	0	0	54.983	54.983
Nacherhitzer	45.778	0	0	0	0	45.778
Dampfbefeuchter	0	0	0	0	0	0
Mischkammer	-123.871	-7.606	-19868	0	0	-151.345
Kühler, temperaturgeregelt	0	3.988	0	0	0	3.988
Ventilator – Umluft	0	0	0	0	43.878	43.878
Ventilator - Abluft	0	0	0	0	27.711	27.711
Summen:	57.155	38.269	0	0	126.572	221.996

FEHLERBETRACHTUNG

INVESTKOSTEN

Die Ermittlung der Investitionskosten erfolgte für alle Anlagen mit den selben spezifischen Kostenansätzen. Diese Ansätze sind aus der Analyse einer Vielzahl realisierter Projekte im selben regulatorischen Umfeld ermittelt worden.

Eine unkritische Übernahme für andere Projekte ist jedoch trotzdem nicht empfehlenswert.

Die getroffenen Ansätze sind transparent dokumentiert um ggfs. notwendige Anpassungen an individuelle Aufgabenstellungen und qualitative Anforderungen zu ermöglichen.

JAHRES-ENERGIEKOSTEN

Beim Elektroenergiebedarf der Zuluft-Ventilatoren von V01 und V02 ergibt sich eine erkennbare Differenz.

Die Berechnung der Betriebskosten erfolgte mit konstanten Zuluft-Massenstrom.

Aus der druck- und temperaturabhängigen Luftdichte errechnet sich der Volumenstrom der geförderten Zuluft.

Aufgrund der, gegenüber dem KVS-WRG, thermisch effizienteren Mischkammer, hat die Zuluft im Ventilator des Mischluftgerätes eine geringere Dichte.

Bei identischem Massenstrom fördert der Ventilator im Mischluftgerät deshalb mehr Volumen als im Außenluftgerät mit KVS-WRG.

Mit identischem System-Druckverlust ergibt sich deshalb ein höherer Energieaufwand.

FAZIT - SCHLUSSFOLGERUNG

INVESTKOSTEN

Durch den Einsatz von dezentralen Mischlufteinheiten in lufttechnischen Anlagen für Reinräume lassen sich, je nach Aufgabenstellung, bis zu 55% der Investitionskosten einsparen.

Zur Realisierung des gesamten Potentials ist jedoch eine integrale Betrachtung des gesamten Systems, bestehend aus Raumlufttechnik und versorgenden Mediengewerken sowie Elektroanlagen, erforderlich.

Selbst bei isolierter Betrachtung der Raumlufttechnischen Anlage ergeben sich aus der Reduzierung der zu fördernden Luftmengen erhebliche Einsparungen gegenüber konventionellen Konzepten.

Mit Mischluft-FFU reduziert sich der Montageaufwand für die Raumlufttechnik im Reinraumbereich.

Bei Umrüstungen oder Upgrades bestehender Bereiche können Produktionsunterbrechungen deshalb wesentlich verkürzt werden.

Durch den modularen Aufbau des Konzeptes sind bestehende lufttechnische Anlagen sehr einfach, raum- bzw. bereichsweise mit Mischluft-FFU zu ergänzen.

Dabei kann der Luftwechsel in den Räumen um den Faktor 2 ... 5 erhöht werden. Je nach gewählter Filterklasse kann so die Partikelreinheit des Raumes um bis zu 3 Stufen verbessert werden.

Dieses Konzept ermöglicht zusätzlich die Ableitung der Wärmelasten zusätzlicher Maschinen ohne Veränderung der zentralen lufttechnischen Anlagen sowie des Kanalnetzes.

JAHRES-ENERGIEKOSTEN

Bei der Berechnung der Jahres-Energiekosten wurde eine optimierte Regelstrategie zugrunde gelegt und die verfügbaren Angaben zu Wärmeund Feuchte-Lasten berücksichtigt.

Alle Konzepte (v01, V02, V03) gewährleisten die Einhaltung der definierten Raumkonditionen während des gesamten Jahresverlaufes.

Der überwiegende Anteil der Einergieeinsparung ergibt sich aus dem verringerten Energieaufwand für den Transport der Zu- und Abluft.

Aber auch bei Heiz- und Kältebedarf ist eine erhebliche Reduzierung erkennbar.

Konzeptionell bedingt sind mit "Dezentralen Mischluft-FFU" weitere Energie-Einsparungen realisierbar, da an jedem einzelnen Gerät unterschiedliche Kühllasten abgeführt werden können ohne die Zuluft-Temperatur des Zentralgerätes auf das benötigte Minimum absenken zu müssen

AMORTISATION

Eine Amortisation konnte nicht ermittelt werden, da das energetisch sinnvollste System ebenfalls das am günstigsten zu errichtende System ist.

Es ist somit keine Mehrinvestition zu bestimmen welche durch Betriebskosten-Einsparungen refinanziert werden könnte.

Lösungen für die Reinraumtechnik

Weitere Informationen finden Sie unter $\underline{www.cleanroom\text{-}systems.com}.$

CLEANROOM SYSTEMS GMBH
Solutions for Life Science + Clean Manufacturing

Tel: +49 (0) 9181 - 904 33 63 Fax: +49 (0) 9181 - 904 33 89 E-Mail: office@cleanroom-systems.com